Exercise 8.1: This exercise consists of 2 Questions and Solutions. This exercise deals with addition and subtraction of Algebraic Expressions.
Exercise 8.2: This exercise consists of 5 Questions and Solutions. This exercise deals with multiplication of Algebraic Expressions, multiplying a monomial by a monomial and multiplying three or more monomials.
Exercise 8.3: This exercise consists of 5 Questions and Solutions. This exercise deals with multiplying a monomial by a polynomial, multiplying a monomial by a binomial, multiplying a monomial by a trinomial.
Exercise 8.4: This exercise consists of 3 Questions and Solutions. This exercise deals with multiplying a polynomial by a polynomial, multiplying a binomial by a binomial, multiplying a binomial by a trinomial.
Access NCERT Solutions for Class 8 Maths chapter 8 – Algebraic Expressions and Identities
Exercise - 8.1
1. Add the following:
(i) ${\text{ab - bc,bc - ca,ca - ab}}$
Ans:
${\text{ 12a - 9ab + 5b - 3}} $
Therefore, the sum of the given expressions is o.
(ii) ${\text{a - b + ab,b - c + bc,c - a + ac}}$
Ans:
$ {\text{ }}a - b + ab $
$ {\text{ }} + b{\text{ }} - c + bc $
$ {\text{ }} + \quad - a{\text{ }} + c{\text{ + ac}} $
$ \overline {{\text{ ab + bc + ac}}} $
Thus the sum of given expressions is ${\text{ab + bc + ac}}$
(iii) ${\text{2}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}{\text{ - 3pq + 4,5 + 7pq - 3}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}$
Ans:
$ {\text{ 2}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}{\text{ - 3pq + 4}} $
$ {\text{ + - 3}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}{\text{ + 7pq + 5}}$
$ \overline {{\text{ - }}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}{\text{ + 4pq + 9}}} $
Therefore, the sum of given expressions is ${\text{ - }}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}{\text{ + 4pq + 9}}$
(iv) ${{\text{l}}^{\text{2}}}{\text{ + }}{{\text{m}}^{\text{2}}}{\text{,}}{{\text{m}}^{\text{2}}}{\text{ + }}{{\text{n}}^{\text{2}}}{\text{,}}{{\text{n}}^{\text{2}}}{\text{ + }}{{\text{l}}^{\text{2}}}{\text{,2lm + 2mn + 2nl}}$
Ans:
$ {\text{ }}{{\text{l}}^{\text{2}}}{\text{ + }}{{\text{m}}^{\text{2}}} $
$ {\text{ + }}{{\text{m}}^{\text{2}}}{\text{ + }}{{\text{n}}^{\text{2}}} $
$ {\text{ + }}{{\text{l}}^{\text{2}}}{\text{ + }}{{\text{n}}^{\text{2}}} $
$ {\text{ + 2lm + 2mn + 2nl}} $
$ \overline {{\text{ 2}}{{\text{l}}^{^{\text{2}}}}{\text{ + 2}}{{\text{m}}^{\text{2}}}{\text{ + 2}}{{\text{n}}^{\text{2}}}{\text{ + 2lm + 2mn + 2nl}}} $
Therefore, the sum of the given expressions is ${\text{2}}{{\text{l}}^{^{\text{2}}}}{\text{ + 2}}{{\text{m}}^{\text{2}}}{\text{ + 2}}{{\text{n}}^{\text{2}}}{\text{ + 2lm + 2mn + 2nl}}$
2. Solve the following:
(i) Subtract ${\text{4a - 7ab + 3b + 12}}$ from ${\text{12a - 9ab + 5b - 3}}$
Ans:
$ {12a - 9ab + 5b - 3} $
$ {4a - 7ab + 3b + 12} $
$ {( - )\quad ( + )\quad ( - )( - )} $
$ {\overline {8a - 2ab + 2b - 15} } $
(ii) Subtract ${\text{3xy + 5yz - 7zx}}$ from ${\text{5xy - 2yz - 2zx + 10xyz}}$
Ans:
$ {\text{5xy - 2yz - 2zx + 10xyz}} $
$ {\text{3xy + 5yz - 7zx}} $
$ {\text{( - )( - )}}\quad {\text{( + )}} $
$ \overline {{\text{2xy - 7yz + 5zx + 10xyz}}} $
(iii) Subtract ${\text{4p 2q - 3pq + 5pq2 - 8p + 7q - 10}}$from ${\text{18 - 3p - 11q + 5pq - 2pq2 + 5p 2q}}$
Ans:
$ {\text{18 - 3p - 11q + 5pq - 2p}}{{\text{q}}^{\text{2}}}{\text{ + 5}}{{\text{p}}^{\text{2}}}{\text{q}} $
$ {\text{ - 10 - 8p + 7q - 3pq + 5p}}{{\text{q}}^{\text{2}}}{\text{ + 4}}{{\text{p}}^{\text{2}}}{\text{q}} $
$ \dfrac{{{\text{( + )( + )( - )( + )( - )}}\quad {\text{( - )}}}}{{{\text{28 + 5p - 18q + 8pq - 7p}}{{\text{q}}^{\text{2}}}{\text{ + }}{{\text{p}}^{\text{2}}}{\text{q}}}} $
Exercise -8.2
1. Find the product of the following pairs of monomials.
(i) ${\text{4,7p}}$
Ans: ${{4 \times 7p = 4 \times 7 \times p = 28p}}$
(ii) $\dfrac{{{\text{first monomial}} \to }}{{{\text{second monomial}} \downarrow }}$
Ans: ${{ - 4p \times 7p = - 4 \times p \times 7 \times p = }}\left( {{{ - 4 \times 7}}} \right){{ \times }}\left( {{{p \times p}}} \right){\text{ = - 28 }}{{\text{p}}^2}$
(iii) ${\text{ - 4p,7pq}}$
Ans: ${{ - 4p \times 7pq = - 4 \times p \times 7 \times p \times q = }}\left( {{{ - 4 \times 7}}} \right){{ \times }}\left( {{{p \times p \times q}}} \right){\text{ = - 28}}{{\text{p}}^2}{\text{q }}$
(iv) ${\text{4}}{{\text{p}}^{\text{3}}}{\text{ , - 3p }}$
Ans: ${\text{ 4}}{{\text{p}}^{\text{3}}}{{ \times - 3p = 4 \times }}\left( {{\text{ - 3}}} \right){{ \times p \times p \times p \times p = - 12 }}{{\text{p}}^{\text{4}}}$
(v) ${\text{4p, 0}}$
Ans: ${{4p \times 0 = 4 \times p \times 0 = 0 }}$
2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
$\left( {{\text{p, q}}} \right){\text{; }}\left( {{\text{10m, 5n}}} \right){\text{; }}\left( {{\text{20}}{{\text{x}}^{\text{2}}}{\text{ , 5}}{{\text{y}}^{\text{2}}}{\text{ }}} \right){\text{; }}\left( {{\text{4x, 3}}{{\text{x}}^{\text{2}}}{\text{ }}} \right){\text{; }}\left( {{\text{3mn, 4np}}} \right){\text{ }}$
Ans: We know that,
Area of rectangle = length x breadth
Area of 1st rectangle = p x q = pq
Area of 2nd rectangle = ${{10m \times 5n = 10 \times 5 \times m \times n = 50mn}}$
Area of 3rd rectangle = ${\text{20}}{{\text{x}}^{\text{2}}}{{ \times 5}}{{\text{y}}^{\text{2}}}{{ = 20 \times 5 \times }}{{\text{x}}^{\text{2}}}{{ \times }}{{\text{y}}^{\text{2}}}{\text{ = 100}}{{\text{x}}^{\text{2}}}{{\text{y}}^{\text{2}}}$
Area of 4th rectangle = ${{4x }} \times {\text{ 3}}{{\text{x}}^{\text{2}}}{{ = 4 \times 3}} \times {{x}} \times {{\text{x}}^2}{\text{ = 12}}{{\text{x}}^3}$
Area of 5th rectangle ${{ = 3mn \times 4np = 3 \times 4 \times m \times n \times n \times p = 12m}}{{\text{n}}^{\text{2}}}{\text{p}}$
3. Complete the table of products.
$\dfrac{{{\text{first monomial}} \to }}{{{\text{second monomial}} \downarrow }}$ | 2x | -5y | 3x2 | -4xy | 7x2y | -9x2y |
2x | 4x2 | … | .. | … | … | … |
-5y | … | … | 15x2 | … | … | … |
3x2 | … | … | … | … | … | … |
-4xy | … | … | … | … | … | … |
7x2y | … | … | … | … | … | … |
-9x2y2 | … | … | … | … | … | … |
Ans:
The table can be completed as follows.
$\dfrac{{{\text{first monomial}} \to }}{{{\text{second monomial}} \downarrow }}$ | 2x | -5y | 3x2 | 4xy | 7x2y | -9x2y |
2x | 4x2 | -10xy | 6x2 | -8x2y | 14x3y | -18x3y2 |
-5y | -10xy | 25y2 | -15x2 | 20xy2 | -35x2y2 | 45x2y3 |
3x2 | 6x3 | -15x2y | 9x4 | -12x3 | 21x4y | -27x4y2 |
-4xy | -8x2y | 20xy2 | -12x3y | 16x2y2 | -28x3y2 | 36x3y3 |
7x2y | 14x3y | -35x2y2 | 21x4y | -28x3y2 | 49x4y2 | -63x4y3 |
-9x2y2 | -18x3y2 | 45x2y3 | -27x4y2 | 36x3y3 | -63x4y3 | 81x4y4 |
4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) ${\text{5a,3}}{{\text{a}}^{\text{2}}}{\text{,7}}{{\text{a}}^{\text{4}}}$
Ans: We know that
Volume= length x breadth x height
Volume =${{5a \times 3}}{{\text{a}}^{\text{2}}}{{ \times 7}}{{\text{a}}^{\text{4}}}{\text{ = 105}}{{\text{a}}^{\text{7}}}$
(ii) ${\text{2p,4q,8r}}$
Ans: We know that
Volume = length x breadth x height
Volume = ${{2p \times 4q \times 8r = 64pqr}}$
(iii) ${\text{xy,2}}{{\text{x}}^{\text{2}}}{\text{y,2x}}{{\text{y}}^{\text{2}}}$
Ans: We know that
Volume = length x breadth x height
Volume = ${{xy \times 2}}{{\text{x}}^{\text{2}}}{{y \times 2x}}{{\text{y}}^{\text{2}}}{\text{ = 4}}{{\text{x}}^{\text{4}}}{{\text{y}}^{\text{4}}}$
(iv) ${\text{a,2b,3c}}$
Ans: We know that
Volume = length x breadth x height
Volume = ${{a}} \times {\text{2b}} \times {\text{3c = 6abc}}$
5. Obtain the product of
(i) ${\text{xy, yz, zx }}$
Ans: ${{xy \times yz \times zx = }}{{\text{x}}^{\text{2}}}{\text{ }}{{\text{y}}^{\text{2}}}{\text{ }}{{\text{z}}^{\text{2}}}$
(ii) ${\text{a, - }}{{\text{a}}^{\text{2}}}{\text{ , }}{{\text{a}}^{\text{3}}}{\text{ }}$
Ans: ${{a}} \times ({\text{ - }}{{\text{a}}^{{2}}}) \times {\text{ }}{{\text{a}}^{\text{3}}}{\text{ = - }}{{\text{a}}^6}{\text{ }}$
(iii) ${\text{2, 4y, 8}}{{\text{y}}^2}{\text{ , 16}}{{\text{y}}^3}$
Ans: ${{2}} \times {{ 4y}} \times {\text{8}}{{\text{y}}^2} \times {\text{ 16}}{{\text{y}}^3} = 1024{y^6}$
(iv) ${\text{a, 2b, 3c, 6abc}}$
Ans: ${{a \times 2b \times 3c \times 6abc = }}$${\text{36}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{{\text{c}}^{\text{2}}}$
(v) ${\text{m, - mn, mnp}}$
Ans: ${{m \times }}\left( {{\text{ - mn}}} \right){{ \times mnp = - }}{{\text{m}}^{\text{3}}}{{\text{n}}^{\text{2}}}$
Exercise -8.3
1. Carry out the multiplication of the expressions in each of the following pairs.
(i) ${\text{4p, q + r }}$
Ans: $\left( {{\text{4p}}} \right){{ \times }}\left( {{\text{q + r}}} \right){\text{ = }}\left( {{{4p \times q}}} \right){\text{ + }}\left( {{{4p \times r}}} \right){\text{ = 4pq + 4pr}}$
(ii) ${\text{ab, a - b }}$
Ans: $\left( {{\text{ab}}} \right){{ \times }}\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{ab \times a}}} \right){\text{ + }}\left[ {{{ab \times }}\left( {{\text{ - b}}} \right)} \right]{\text{ = }}{{\text{a}}^{\text{2}}}{\text{b - a}}{{\text{b}}^{\text{2}}}$
(iii) ${\text{a + b, 7}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}$
Ans: $\left( {{\text{a + b}}} \right){{ \times }}\left( {{\text{7a 2 b 2 }}} \right){\text{ = }}\left( {{{a \times 7}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{\text{ }}} \right){\text{ + }}\left( {{{b \times 7}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{\text{ }}} \right){\text{ = 7}}{{\text{a}}^{\text{3}}}{{\text{b}}^{\text{2}}}{\text{ + 7}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{3}}}$
(iv) ${{\text{a}}^{\text{2}}}{\text{ - 9, 4a}}$
Ans: $\left( {{{\text{a}}^2}{\text{ - 9}}} \right){{ \times }}\left( {{\text{4a}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{{ \times 4a}}} \right){\text{ + }}\left( {{\text{ - 9}}} \right){{ \times }}\left( {{\text{4a}}} \right){\text{ = 4}}{{\text{a}}^{\text{3}}}{\text{ - 36a}}$
(v) ${\text{pq + qr + rp, 0}}$
Ans: $\left( {{\text{pq + qr + rp}}} \right){{ \times 0 = }}\left( {{{pq \times 0}}} \right){\text{ + }}\left( {{{qr \times 0}}} \right){\text{ + }}\left( {{{rp \times 0}}} \right){\text{ = 0 }}$
2. Complete the table
-- | First expression | Second expression | Product |
a | b+c+d | - | |
x+y-5 | 5xy | - | |
p | ${\text{6}}{{\text{p}}^{\text{2}}}{\text{ - 7p + 5 }}$ | - | |
${\text{4}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}$ | ${{\text{p}}^{\text{2}}}{\text{ - }}{{\text{q}}^{\text{2}}}$ | - | |
a+b+c | abc | - |
Ans: The table can be completed as follows:
--- | First expression | Second expression | Product |
a | b+c+d | ab+ac+ad | |
x+y-5 | 5xy | 5x2y+5xy2-25xy | |
p | ${\text{6}}{{\text{p}}^{\text{2}}}{\text{ - 7p + 5 }}$ | 6p3-7p2+5p | |
${\text{4}}{{\text{p}}^{\text{2}}}{{\text{q}}^{\text{2}}}$ | ${{\text{p}}^{\text{2}}}{\text{ - }}{{\text{q}}^{\text{2}}}$ | 4p4q2-4p2q4 | |
a+b+c | abc | a2bc+ab2c+abc2 |
3. Find the product:
(i) $\left( {{{\text{a}}^{\text{2}}}} \right){{ \times }}\left( {{\text{2}}{{\text{a}}^{{\text{22}}}}} \right){{ \times }}\left( {{\text{4}}{{\text{a}}^{{\text{26}}}}} \right)$
Ans: $\left( {{{\text{a}}^{\text{2}}}} \right){{ \times }}\left( {{\text{2}}{{\text{a}}^{{\text{22}}}}} \right){{ \times }}\left( {{\text{4}}{{\text{a}}^{{\text{26}}}}} \right){{ = 2 \times 4 \times }}{{\text{a}}^{\text{2}}}{{ \times }}{{\text{a}}^{{\text{22}}}}{{ \times }}{{\text{a}}^{{\text{26}}}}{\text{ = 8}}{{\text{a}}^{{\text{50}}}}$
(ii) $\left( {\dfrac{{\text{2}}}{{\text{3}}}{\text{xy}}} \right){{ \times }}\left( {\dfrac{{{\text{ - 9}}}}{{{\text{10}}}}{{\text{x}}^{\text{2}}}{{\text{y}}^{\text{2}}}} \right)$
Ans: $\left( {\dfrac{{\text{2}}}{{\text{3}}}{\text{xy}}} \right){{ \times }}\left( {\dfrac{{{\text{ - 9}}}}{{{\text{10}}}}{{\text{x}}^{\text{2}}}{{\text{y}}^{\text{2}}}} \right){\text{ = }}\left( {\dfrac{{\text{2}}}{{\text{3}}}} \right){{ \times }}\left( {\dfrac{{{\text{ - 9}}}}{{{\text{10}}}}} \right){{ \times x \times y \times }}{{\text{x}}^{\text{2}}}{{ \times }}{{\text{y}}^{\text{2}}}{\text{ = }}\dfrac{{{\text{ - 3}}}}{{\text{5}}}{{\text{x}}^{\text{3}}}{{\text{y}}^{\text{3}}}$
(iii) $\left( {{\text{ - }}\dfrac{{{\text{10}}}}{{\text{3}}}{\text{p}}{{\text{q}}^{\text{3}}}} \right){{ \times }}\left( {\dfrac{{\text{6}}}{{\text{5}}}{{\text{p}}^{\text{3}}}{\text{q}}} \right)$
Ans: $\left( {{\text{ - }}\dfrac{{{\text{10}}}}{{\text{3}}}{\text{p}}{{\text{q}}^{\text{3}}}} \right){{ \times }}\left( {\dfrac{{\text{6}}}{{\text{5}}}{{\text{p}}^{\text{3}}}{\text{q}}} \right){\text{ = }}\left( {\dfrac{{{\text{ - 10}}}}{{\text{3}}}} \right){{ \times }}\left( {\dfrac{{\text{6}}}{{\text{5}}}} \right){{ \times p}}{{\text{q}}^{\text{3}}}{{ \times }}{{\text{p}}^{\text{3}}}{\text{q = - 4}}{{\text{p}}^{\text{4}}}{{\text{q}}^{\text{4}}}$
(iv) ${{x \times }}{{\text{x}}^{\text{2}}}{{ \times }}{{\text{x}}^{\text{3}}}{{ \times }}{{\text{x}}^{\text{4}}}$
Ans: ${{x \times }}{{\text{x}}^{\text{2}}}{{ \times }}{{\text{x}}^{\text{3}}}{{ \times }}{{\text{x}}^{\text{4}}}{\text{ = }}{{\text{x}}^{10}}$
4. Solve the following
(a) Simplify ${\text{3x }}\left( {{\text{4x - 5}}} \right){\text{ + 3}}$and find its values for
(i) ${\text{ x = 3}}$
Ans: ${\text{3x }}\left( {{\text{4x - 5}}} \right){\text{ + 3 = 12}}{{\text{x}}^{\text{2}}}{\text{ - 15x + 3 }}$
$ {\text{ For x = 3, 12}}{{\text{x}}^{\text{2}}}{\text{ - 15x + 3 = 12 }}{\left( {\text{3}} \right)^{\text{2}}}{\text{ - 15}}\left( {\text{3}} \right){\text{ + 3 }} $
$ {\text{ = 108 - 45 + 3 }} $
$ {\text{ = 66 }} $
(ii) ${\text{x = }}\dfrac{{\text{1}}}{{\text{2}}}$
Ans:
$ {\text{ For x = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{, 12}}{{\text{x}}^{\text{2}}}{\text{ - 15x + 3 = 12 }}{\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)^{\text{2}}}{\text{ - 15}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ + 3 }} $
$ {\text{ = 3 - }}\dfrac{{{\text{15}}}}{{\text{2}}}{\text{ + 3 }} $
$ {\text{ = 6 - }}\dfrac{{{\text{15}}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{12 - 15}}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{ - 3}}}}{{\text{2}}} $
(b) ${\text{a }}\left( {{{\text{a}}^{\text{2}}}{\text{ + a + 1}}} \right){\text{ + 5}}$ and find its value for
(i) ${\text{a = 0}}$
Ans: ${\text{For a = 0, }}{{\text{a}}^{\text{3}}}{\text{ + }}{{\text{a}}^{\text{2}}}{\text{ + a + 5 = 0 + 0 + 0 + 5 = 5}}$
(ii) ${\text{a = 1}}$
Ans: $ {\text{For a = 1, }}{{\text{a}}^{\text{3}}}{\text{ + }}{{\text{a}}^{\text{2}}}{\text{ + a + 5 = }}{\left( {\text{1}} \right)^{\text{3}}}{\text{ + }}{\left( {\text{1}} \right)^{\text{2}}}{\text{ + 1 + 5}} $
$ {\text{ = 1 + 1 + 1 + 5 = 8 }} $
(iii) ${\text{a = - 1}}$
Ans: $ {\text{For a = - 1, }}{{\text{a}}^{\text{3}}}{\text{ + }}{{\text{a}}^{\text{2}}}{\text{ + a + 5 = }}{\left( {{\text{ - 1}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{ - 1}}} \right)^{\text{2}}}{\text{ + }}\left( {{\text{ - 1}}} \right){\text{ + 5 }} $
$ {\text{ = - 1 + 1 - 1 + 5 = 4 }} $
5. Solve the following
(i) Add: ${\text{p (p - q), q (q - r)}}$ and ${\text{r (r - p)}}$
Ans:
$ {\text{First expression = p }}\left( {{\text{p - q}}} \right){\text{ = }}{{\text{p}}^2}{\text{ - pq }} $
$ {\text{Second expression = q }}\left( {{\text{q - r}}} \right){\text{ = }}{{\text{q}}^2}{\text{ - qr}} $
$ {\text{Third expression = r }}\left( {{\text{r - p}}} \right){\text{ = }}{{\text{r}}^2}{\text{ - pr}} $
Adding the three expressions, we obtain
$ {\text{ }}{{\text{p}}^{\text{2}}}{\text{ - pq }} $
$ {\text{ + }}{{\text{q}}^{\text{2}}}{\text{ - qr}} $
$ {\text{ + }}{{\text{r}}^{\text{2}}}{\text{ - pr}} $
$ \overline {{\text{ }}{{\text{p}}^{\text{2}}}{\text{ - pq + }}{{\text{q}}^{\text{2}}}{\text{ - qr + }}{{\text{r}}^{\text{2}}}{\text{ - pr}}} $
Therefore, the sum is ${{\text{p}}^{\text{2}}}{\text{ - pq + }}{{\text{q}}^{\text{2}}}{\text{ - qr + }}{{\text{r}}^{\text{2}}}{\text{ - pr}}$
(ii) Add: ${\text{2x }}\left( {{\text{z - x - y}}} \right){\text{ and 2y }}\left( {{\text{z - y - x}}} \right){\text{ }}$
Ans:
$ {\text{First expression = 2x }}\left( {{\text{z - x - y}}} \right){\text{ = 2xz - 2}}{{\text{x}}^{\text{2}}}{\text{ - 2xy }} $
$ {\text{Second expression = 2y }}\left( {{\text{z - y - x}}} \right){\text{ = 2yz - 2}}{{\text{y}}^{\text{2}}}{\text{ - 2yx }} $
Adding the two expressions, we obtain
$ {\text{ 2xz - 2}}{{\text{x}}^{\text{2}}}{\text{ - 2xy }} $
$ {\text{ + - 2yx + 2yz - 2}}{{\text{y}}^{\text{2}}}{\text{ }} $
$ \overline {\,\,{\text{ 2xz - 2}}{{\text{x}}^{\text{2}}}{\text{ - 4xy + 2yz - 2}}{{\text{y}}^{\text{2}}}} $
Therefore, the sum is ${\text{2xz - 2}}{{\text{x}}^{\text{2}}}{\text{ - 4xy + 2yz - 2}}{{\text{y}}^{\text{2}}}$
(iii) Subtract ${\text{3l }}\left( {{\text{l - 4m + 5n}}} \right){\text{ from 4l }}\left( {{\text{10n - 3m + 2l}}} \right){\text{ }}$
Ans:
$ {\text{3l }}\left( {{\text{l - 4m + 5n}}} \right){\text{ = 3}}{{\text{l}}^{\text{2}}}{\text{ - 12lm + 15ln }} $
$ {\text{4l }}\left( {{\text{10n - 3m + 2l}}} \right){\text{ = 40ln - 12lm + 8}}{{\text{l}}^{\text{2}}}{\text{ }} $
Subtracting these expressions, we obtain
$ {\text{ 8}}{{\text{l}}^{\text{2}}}{\text{ - 12lm + 40ln}} $
$ {\text{ 3}}{{\text{l}}^{\text{2}}}{\text{ - 12lm + 15ln}} $
$ ( - )\,{\text{ }}( + ){\text{ }}( - ) $
$ \overline {{\text{ 5}}{{\text{l}}^2}{\text{ + 25ln }}} {\text{ }} $
Therefore, the result is ${\text{5}}{{\text{l}}^2}{\text{ + 25ln}}$
(iv) Subtract ${\text{3a }}\left( {{\text{a + b + c}}} \right){\text{ - 2b }}\left( {{\text{a - b + c}}} \right){\text{ from 4c }}\left( {{\text{ - a + b + c}}} \right)$
Ans:
$ {\text{ + 4}}{{\text{c}}^{\text{2}}}{\text{ - 4ac + 4bc }} $
$ {\text{ 3}}{{\text{a}}^{\text{2}}}{\text{ + 2}}{{\text{b}}^{{\text{2 }}}}{\text{ + ab + 3ac - 2bc}} $
$ {\text{( - ) ( - ) ( - ) ( - ) ( + )}} $
$ \overline {{\text{ - 3}}{{\text{a}}^{\text{2}}}{\text{ - 2}}{{\text{b}}^{\text{2}}}\,{\text{ + 4}}{{\text{c}}^{\text{2}}}{\text{ + ab - 7ac + 6bc}}} $
Therefore, the result is ${\text{ - 3}}{{\text{a}}^{\text{2}}}{\text{ - 2}}{{\text{b}}^{\text{2}}}\,{\text{ + 4}}{{\text{c}}^{\text{2}}}{\text{ + ab - 7ac + 6bc}}$
Exercise -8.4
1. Multiply the binomials.
(i) ${\text{(2x + 5)}}$and ${\text{(4x - 3)}}$
Ans: ${\text{(2x + 5) }} \times {\text{ (4x - 3) = 2x }} \times {\text{(4x - 3) + 5}} \times {\text{(4x - 3)}}$
${\text{ = 8}}{{\text{x}}^2}{\text{ - 6x + 20x - 15}}$
${\text{ = 8x2 + 14x - 15 (By adding like terms)}}$
(ii) ${\text{(y - 8)}}$and ${\text{(3y - 4)}}$
Ans: ${{ (y - 8) \times (3y - 4) = y \times (3y - 8) - 8 \times (3y - 4)}}$
${\text{ = 3}}{{\text{y}}^2}{\text{ - 4y - 24y + 32}}$
${\text{ = 3}}{{\text{y}}^{\text{2}}}{\text{ - 28y + 32 (By adding like terms)}}$
(iii) ${\text{(2}}{\text{.5l - 0}}{\text{.5m)}}$and ${\text{(2}}{\text{.5l + 0}}{\text{.5m)}}$
Ans: ${\text{(2}}{\text{.5l - 0}}{\text{.5m)(2}}{\text{.5l + 0}}{\text{.5m) = 2}}{{.5l \times (2}}{\text{.5l + 0}}{\text{.5m) - 0}}{\text{.5m(2}}{\text{.5l + 0}}{\text{.5m)}}$
${\text{ = 6}}{\text{.25}}{{\text{l}}^2}{\text{ + 1}}{\text{.25lm - 1}}{\text{.25lm - 0}}{\text{.25}}{{\text{m}}^2}$
${\text{ = 6}}{\text{.25}}{{\text{l}}^2}{\text{ - 0}}{\text{.25}}{{\text{m}}^2}$
(iv) $\left( {{\text{a + 3b}}} \right)$and ${\text{(x + 5)}}$
Ans: ${\text{(a + 3b) }} \times {\text{ (x + 5) = a}} \times {{(x + 5) + 3b }} \times {\text{(x + 5)}}$
${\text{ = ax + 5a + 3bx + 15b}}$
(v) ${\text{(2pq + 3}}{{\text{q}}^2}{\text{)}}$and ${\text{(3pq - 2}}{{\text{q}}^2}{\text{)}}$
Ans: ${\text{(2pq + 3}}{{\text{q}}^2}{\text{)}} \times {\text{(3pq - 2}}{{\text{q}}^2}{\text{) = 2pq }} \times {\text{(3pq - 2}}{{\text{q}}^2}{\text{) + 3}}{{\text{q}}^2} \times {\text{(3pq - 2}}{{\text{q}}^2}{\text{)}}$
${\text{ = 6p2}}{{\text{q}}^2}{\text{ - 4p}}{{\text{q}}^3}{\text{ + 9p}}{{\text{q}}^3}{\text{ - 6}}{{\text{q}}^4}$
${\text{ = 6p2}}{{\text{q}}^2}{\text{ + 5p}}{{\text{q}}^3}{\text{ - 6}}{{\text{q}}^4}$
(vi) $\left( {\dfrac{3}{4}{a^2} + 3{b^2}} \right)$and $4\left( {{a^2} - \dfrac{2}{3}{b^2}} \right)$
Ans: $\left( {\dfrac{{\text{3}}}{{\text{4}}}{{\text{a}}^{\text{2}}}{\text{ + 3}}{{\text{b}}^{\text{2}}}} \right){{ \times }}\left[ {{\text{4}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}\dfrac{{\text{2}}}{{\text{3}}}{{\text{b}}^{\text{2}}}} \right)} \right]{\text{ = }}\left( {\dfrac{{\text{3}}}{{\text{4}}}{{\text{a}}^{\text{2}}}{\text{ + 3}}{{\text{b}}^{\text{2}}}} \right){{ \times }}\left( {{\text{4}}{{\text{a}}^{\text{2}}}{\text{ - }}\dfrac{{\text{8}}}{{\text{3}}}{{\text{b}}^{\text{2}}}} \right)$
${\text{ = }}\dfrac{{\text{3}}}{{\text{4}}}{{\text{a}}^{\text{2}}}{{ \times }}\left( {{\text{4}}{{\text{\alpha }}^{\text{2}}}{\text{ - }}\dfrac{{\text{8}}}{{\text{3}}}{{\text{b}}^{\text{2}}}} \right){\text{ + 3}}{{\text{b}}^{\text{2}}}{{ \times }}\left( {{\text{4}}{{\text{a}}^{\text{2}}}{\text{ - }}\dfrac{{\text{8}}}{{\text{3}}}{{\text{b}}^{\text{2}}}} \right) $
$ {\text{ = 3}}{{\text{a}}^{\text{4}}}{\text{ - 2}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{\text{ + 12}}{{\text{b}}^{\text{2}}}{{\text{a}}^{\text{2}}}{\text{ - 8}}{{\text{b}}^{\text{4}}} $
$ {\text{ = 3}}{{\text{a}}^{\text{4}}}{\text{ + 10}}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}{\text{ - 8}}{{\text{b}}^{\text{4}}} $
2. Find the product.
(i) ${\text{(5 - 2x) (3 + x)}}$
Ans: ${\text{(5 - 2x) (3 + x) = 5 (3 + x) - 2x (3 + x)}}$
$ {\text{ = 15 + 5x - 6x - 2}}{{\text{x}}^2} $
$ {\text{ = 15 - x - 2}}{{\text{x}}^2} $
(ii) ${\text{(x + 7y) (7x - y)}}$
Ans: ${\text{(x + 7y) (7x - y) = x (7x - y) + 7y (7x - y)}}$
$ {\text{ = 7}}{{\text{x}}^2}{\text{ - xy + 49xy - 7}}{{\text{y}}^2} $
$ {\text{ = 7}}{{\text{x}}^2}{\text{ + 48xy - 7}}{{\text{y}}^2} $
(iii) ${\text{(}}{{\text{a}}^2}{\text{ + b) (a + }}{{\text{b}}^2}{\text{)}}$
Ans: ${\text{(}}{{\text{a}}^2}{\text{ + b) (a + }}{{\text{b}}^2}{\text{) = }}{{\text{a}}^2}{\text{ (a + }}{{\text{b}}^2}{\text{) + b (a + }}{{\text{b}}^2}{\text{)}}$
${\text{ = }}{{\text{a}}^3}{\text{ + }}{{\text{a}}^2}{{\text{b}}^2}{\text{ + ab + }}{{\text{b}}^3}$
(iv) ${\text{(}}{{\text{p}}^2}{\text{ - }}{{\text{q}}^2}{\text{) (2p + q)}}$
Ans: ${\text{(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0}}$
${\text{ = 2}}{{\text{p}}^3}{\text{ + }}{{\text{p}}^2}{\text{q - 2p}}{{\text{q}}^2}{\text{ - }}{{\text{q}}^3}$
3. Simplify.
(i) ${\text{(}}{{\text{x}}^2}{\text{ - 5) (x + 5) + 25}}$
Ans: ${\text{(}}{{\text{x}}^2}{\text{ - 5) (x + 5) + 25}}$
$ {{\text{x}}^2}{\text{ (x + 5) - 5 (x + 5) + 25}} $
$ {\text{ = }}{{\text{x}}^3}{\text{ + 5}}{{\text{x}}^2}{\text{ - 5x - 25 + 25}} $
$ {\text{ = }}{{\text{x}}^3}{\text{ + 5}}{{\text{x}}^2}{\text{ - 5x}} $
(ii) ${\text{(}}{{\text{a}}^2}{\text{ + 5) (}}{{\text{b}}^3}{\text{ + 3) + 5}}$
Ans: ${\text{(}}{{\text{a}}^2}{\text{ + 5) (}}{{\text{b}}^3}{\text{ + 3) + 5}}$
$ {\text{ = }}{{\text{a}}^2}{\text{ (}}{{\text{b}}^3}{\text{ + 3) + 5 (}}{{\text{b}}^3}{\text{ + 3) + 5}} $
$ {\text{ = }}{{\text{a}}^2}{{\text{b}}^3}{\text{ + 3}}{{\text{a}}^2}{\text{ + 5}}{{\text{b}}^3}{\text{ + 15 + 5}} $
$ {\text{ = }}{{\text{a}}^2}{{\text{b}}^3}{\text{ + 3}}{{\text{a}}^2}{\text{ + 5}}{{\text{b}}^3}{\text{ + 20}} $
(iii) ${\text{(t + }}{{\text{s}}^2}{\text{) (}}{{\text{t}}^2}{\text{ - s)}}$
Ans: ${\text{(t + }}{{\text{s}}^2}{\text{) (}}{{\text{t}}^2}{\text{ - s)}}$
$ {\text{ = t (}}{{\text{t}}^2}{\text{ - s) + }}{{\text{s}}^2}{\text{ (}}{{\text{t}}^2}{\text{ - s)}} $
$ {\text{ = }}{{\text{t}}^3}{\text{ - st + }}{{\text{s}}^2}{{\text{t}}^2}{\text{ - }}{{\text{s}}^3} $
(iv) ${\text{(a + b) (c - d) + (a - b) (c + d) + 2 (ac + bd)}}$
Ans: ${\text{(a + b) (c - d) + (a - b) (c + d) + 2 (ac + bd)}}$
$ {\text{ = a (c - d) + b (c - d) + a (c + d) - b (c + d) + 2 (ac + bd)}} $
$ {\text{ = ac - ad + bc - bd + ac + ad - bc - bd + 2ac + 2bd}} $
$ {\text{ = (ac + ac + 2ac) + (ad - ad) + (bc - bc) + (2bd - bd - bd)}} $
$ {\text{ = 4ac}} $
(v) ${\text{(x + y) (2x + y) + (x + 2y) (x - y)}}$
Ans: ${\text{(x + y) (2x + y) + (x + 2y) (x - y)}}$
$ {\text{ = x (2x + y) + y (2x + y) + x (x - y) + 2y (x - y)}} $
$ {\text{ = 2}}{{\text{x}}^2}{\text{ + xy + 2xy + }}{{\text{y}}^2}{\text{ + }}{{\text{x}}^2}{\text{ - xy + 2xy - 2}}{{\text{y}}^2} $
$ {\text{ = (2}}{{\text{x}}^2}{\text{ + }}{{\text{x}}^2}{\text{) + (}}{{\text{y}}^2}{\text{ - 2}}{{\text{y}}^2}{\text{) + (xy + 2xy - xy + 2xy)}} $
$ {\text{ = 3}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{ + 4xy}} $
(vi) ${\text{(x + y) (}}{{\text{x}}^2}{\text{ - xy + }}{{\text{y}}^2}{\text{)}}$
Ans: ${\text{(x + y) (}}{{\text{x}}^2}{\text{ - xy + }}{{\text{y}}^2}{\text{)}}$
$ {\text{ = x (}}{{\text{x}}^2}{\text{ - xy + }}{{\text{y}}^2}{\text{) + y (}}{{\text{x}}^2}{\text{ - xy + }}{{\text{y}}^2}{\text{)}} $
$ {\text{ = }}{{\text{x}}^3}{\text{ - }}{{\text{x}}^2}{\text{y + x}}{{\text{y}}^2}{\text{ + }}{{\text{x}}^2}{\text{y - x}}{{\text{y}}^2}{\text{ + }}{{\text{y}}^3} $
$ {\text{ = }}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + (x}}{{\text{y}}^2}{\text{ - x}}{{\text{y}}^2}{\text{) + (}}{{\text{x}}^2}{\text{y - }}{{\text{x}}^2}{\text{y)}} $
$ {\text{ = }}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3} $
(vii) ${\text{(1}}{\text{.5x - 4y) (1}}{\text{.5x + 4y + 3) - 4}}{\text{.5x + 12y}}$
Ans: ${\text{(1}}{\text{.5x - 4y) (1}}{\text{.5x + 4y + 3) - 4}}{\text{.5x + 12y}}$
$ {\text{ = 1}}{\text{.5x (1}}{\text{.5x + 4y + 3) - 4y (1}}{\text{.5x + 4y + 3) - 4}}{\text{.5x + 12y}} $
$ {\text{ = 2}}{\text{.25 }}{{\text{x}}^2}{\text{ + 6xy + 4}}{\text{.5x - 6xy - 16}}{{\text{y}}^2}{\text{ - 12y - 4}}{\text{.5x + 12y}} $
$ {\text{ = 2}}{\text{.25 }}{{\text{x}}^2}{\text{ + (6xy - 6xy) + (4}}{\text{.5x - 4}}{\text{.5x) - 16}}{{\text{y}}^2}{\text{ + (12y - 12y)}} $
$ {\text{ = 2}}{\text{.25}}{{\text{x}}^2}{\text{ - 16}}{{\text{y}}^2} $
(viii) ${\text{(a + b + c) (a + b - c)}}$
Ans: ${\text{(a + b + c) (a + b - c)}}$
$ {\text{ = a (a + b - c) + b (a + b - c) + c (a + b - c)}} $
$ {\text{ = }}{{\text{a}}^2}{\text{ + ab - ac + ab + }}{{\text{b}}^2}{\text{ - bc + ca + bc - }}{{\text{c}}^2} $
$ {\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - }}{{\text{c}}^2}{\text{ + (ab + ab) + (bc - bc) + (ca - ca)}} $
$ {\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - }}{{\text{c}}^2}{\text{ + 2ab}} $
NCERT Solutions for Class 8 Maths chapter 8 PDF
Overview of Deleted Syllabus for CBSE Class 8 Maths Algebraic Expressions and Identities
Chapter | Dropped Topics |
Algebraic Expressions and Identities | 8.1 Introduction |
8.2 Terms, Factors and Coefficients | |
8.3 Monomials, Binomials and Polynomials | |
8.4 Like and Unlike Terms | |
8.10 What is an Identity? | |
8.11 Standard Identities | |
8.12 Applying Identities |
Class 8 Maths chapter 8: Exercises Breakdown
Exercise | Number of Questions |
Exercise 8.1 | 2 Questions and Solutions |
Exercise 8.2 | 5 Questions and Solutions |
Exercise 8.3 | 5 Questions and Solutions |
Exercise 8.4 | 3 Questions with Solutions |
Conclusion
NCERT Solutions for Maths Algebraic Expressions Class 8 Chapter 8 by Vedantu are essential for building a strong foundation in algebra. This chapter introduces you to the basics of forming and simplifying algebraic expressions, and understanding and applying various algebraic identities.
In previous year exams, around 3–4 questions have been asked from this chapter, highlighting its significance in the overall curriculum. By thoroughly practising the problems and understanding the step-by-step solutions provided by Vedantu, you can confidently tackle algebraic expressions and identities.
Other Study Material for CBSE Class 8 Maths chapter 8
S. No | Important Links for chapter 8 Algebraic Expressions and Identities |
1 | Class 8 Algebraic Expressions and Identities Important Questions |
2 | Class 8 Algebraic Expressions and Identities Revision Notes |
3 | Class 8 Algebraic Expressions and Identities Important Formulas |
4 | Class 8 Algebraic Expressions and Identities NCERT Exemplar Solution |
5 | Class 8 Algebraic Expressions and Identities RD Sharma Solutions |
6 | Class 8 Algebraic Expressions and Identities RS Aggarwal Solutions |
Chapter-Specific NCERT Solutions for Class 8 Maths
Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S. No | NCERT Solutions Class 8 Maths Chapter-wise List |
1 | Chapter 1 - Rational Numbers Solutions |
2 | Chapter 2 - Linear Equations in One Variable Solutions |
3 | Chapter 3 - Understanding Quadrilaterals Solutions |
4 | Chapter 4 - Data Handling Solutions |
5 | Chapter 5 - Squares and Square Roots Solutions |
6 | Chapter 6 - Cubes and Cube Roots Solutions |
7 | Chapter 7 - Comparing Quantities Solutions |
8 | Chapter 9 - Mensuration Solutions |
9 | Chapter 10 - Exponents and Powers Solutions |
10 | Chapter 11 - Direct and Inverse Proportions Solutions |
11 | Chapter 12 - Factorisation Solutions |
12 | Chapter 13 - Introduction to Graphs Solutions |
Important Related Links for CBSE Class 8 Maths
S. No | Other Study Materials for CBSE Class 8 Maths |
1 | CBSE Class 8 Maths NCERT Textbook |
2 | CBSE Class 8 Maths Important Questions |
3 | CBSE Class 8 Maths Sample Papers |
4 | CBSE Class 8 Maths NCERT Exemplar Solutions |
5 | CBSE Class 8 Maths RD Sharma Solutions |
6 | CBSE Class 8 Maths RS Aggarwal Solutions |
7 | CBSE Class 8 Maths Formulas |